Class 12 IP Worksheet: DataFrame Attributes
Section A: Multiple Choice Questions (MCQs)
Which attribute of a DataFrame returns the number of rows and columns?
- a)
df.shape
- b)
df.size
- c)
df.ndim
- d)
df.columns
- a)
Which attribute gives the data types of the columns in a DataFrame?
- a)
df.dtypes
- b)
df.types
- c)
df.columns
- d)
df.info()
- a)
What does the
df.index
attribute return?- a) The names of the columns
- b) The labels of the rows (index labels)
- c) The data type of the DataFrame
- d) The shape of the DataFrame
Which attribute would you use to get a summary of non-null values for each column in a DataFrame?
- a)
df.describe()
- b)
df.columns
- c)
df.notnull()
- d)
df.count()
- a)
Section B: Short Answer Questions
- What is the use of the
df.columns
attribute in a DataFrame? - Explain the difference between
df.size
anddf.shape
. - How can you use the
df.T
attribute? Provide an example. Describe what the
df.ndim
attribute returns and its significance.
Section C: Long Answer Questions
Given the following DataFrame, write code to display and explain the use of each of the following attributes:
df.shape
,df.columns
,df.index
,df.dtypes
, anddf.size
.data = {'Product': ['Laptop', 'Tablet', 'Smartphone'],'Price': [1000, 500, 800],'Stock': [50, 100, 75]}df = pd.DataFrame(data)Create a DataFrame with the following data and perform the following tasks using DataFrame attributes:
data = {'Name': ['Alice', 'Bob', 'Charlie'],'Math': [90, 85, 78],'Science': [95, 80, 88],'English': [85, 87, 92]}df = pd.DataFrame(data)- a)Use
df.T
to transpose the DataFrame and display it. - b) Find the data type of each column using
df.dtypes
. - c) Display the number of dimensions of the DataFrame using
df.ndim
.
- a)Use
Section D: Practical Application
Load a DataFrame from a CSV file and use the following attributes to understand its structure and data:
- a)
df.info()
- b)
df.head()
- c)
df.columns
- d)
df.shape
- a)
Create a DataFrame to record student attendance with columns: 'Name', 'Present_Days', 'Total_Days'. Using the attributes
df.columns
,df.index
, anddf.dtypes
, analyze the DataFrame and perform the following tasks:- a) Rename the columns to 'Student_Name', 'Days_Present', and 'Total_Attendance'.
- b) Reset the index to start from 1 instead of 0.
- c) Display the new data types of the columns.
3. Load a dataset from a CSV file into a DataFrame. Using the following attributes, perform an in-depth analysis:
- A)
df.columns
- B)
df.dtypes
- C)
df.index
Instructions: Analyze the output to determine the structure, data types, and memory usage of the dataset. Propose changes to optimize memory and enhance data handling.
4. Create a DataFrame with at least 5 rows and 4 columns. Use the following attributes to perform operations and explain the output:
- a)
df.columns
- b)
df.index
- c)
df.dtypes
- d)
df.T
5. Create a DataFrame to record student attendance with columns: 'Name', 'Present_Days', 'Total_Days'. Using the attributes df.columns
, df.index
, and df.dtypes
, analyze the DataFrame and perform the following tasks:
- a) Rename the columns to 'Student_Name', 'Days_Present', and 'Total_Attendance'.
- b) Reset the index to start from 1 instead of 0.
- c) Display the new data types of the columns.
6. Load a DataFrame from a CSV file and use the following attributes to understand its structure and data:
- a) df.head()
- b)
df.columns
- c)
df.shape
0 Comments
Please do note create link post in comment section