To work with columns and rows in a DataFrame using Python, you'll typically use the pandas library, which provides powerful data manipulation tools. Below is a basic example to demonstrate how to create a DataFrame, access its columns and rows, and perform some common operations. How to access columns and rows in DataFrame.
Key Points:
Accessing Columns:
- You can access a single column using
df['ColumnName']
. - Multiple columns can be accessed using
df[['Column1', 'Column2']]
.
- You can access a single column using
Accessing Rows:
- Use
df.iloc[index]
for accessing rows by their integer location. - Use
df.loc[index]
for accessing rows by their label/index.
- Use
Accessing Specific Elements:
df.at[row_index, 'ColumnName']
accesses a specific element based on row and column labels.
Filtering Rows:
- You can filter rows based on a condition, such as
df[df['Age'] > 25]
to get all rows where the 'Age' column has values greater than 25.
# Accessing column Single Rows and
multiple rows
import pandas as pd
# Sample data
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [24, 27, 22, 32],
'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
}
# Create DataFrame
df = pd.DataFrame(data)
# Display the DataFrame
print("DataFrame:")
print(df)
# Accessing columns
print("\nAccessing the 'Name' column:")
print(df['Name'])
# Accessing multiple columns
print("\nAccessing the 'Name' and 'City' columns:")
print(df[['Name', 'City']])
# Accessing column Single and
multiple columns
import pandas as pd
# Sample data
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [24, 27, 22, 32],
'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
}
# Create DataFrame
df = pd.DataFrame(data)
# Display the DataFrame
print("DataFrame:")
print(df)
print(" Accessing columns ")
print(df.Name)
# Accessing row using Default index Single Rows and
multiple rows
import pandas as pd
# Sample data
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [24, 27, 22, 32],
'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
}
# Create DataFrame
df = pd.DataFrame(data)
# Accessing rows using iloc (integer-location based indexing)
print("\nAccessing the first row:")
print(df.iloc[0])
print("\nAccessing the Multiple rows:")
print(df.iloc[0:3])
# Accessing row using given index Single Rows and
multiple rows
import pandas as pd
# Sample data
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [24, 27, 22, 32],
'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
}
# Create DataFrame
df = pd.DataFrame(data)
print(df)
# Accessing rows using loc (label based indexing)
print("\nAccessing the row where index is 1:")
print(df.loc[1])
print("\nAccessing the rows where index is 1:3")
print(df.loc[1:3])
# Accessing row and column or specific values
import pandas as pd
# Sample data
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [24, 27, 22, 32],
'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
}
# Create DataFrame
df = pd.DataFrame(data)
print(df)
# Accessing a specific element (row and column)
print("\nAccessing the element in the second row and 'City' column:")
print(df.at[1, 'City'])
# Accessing row and column or specific values
import pandas as pd
# Sample data
data = {
'Name': ['Alice', 'Bob', 'Charlie', 'David'],
'Age': [24, 27, 22, 32],
'City': ['New York', 'Los Angeles', 'Chicago', 'Houston']
}
# Create DataFrame
df = pd.DataFrame(data)
print(df)
# Accessing a specific element (row and column)
print("\nAccessing the element in the second row and 0 column:")
print(df.iat[1, 0])
print("\nAccessing the element in the 3 row and 2 column:")
print(df.iat[2, 2])
0 Comments
Please do note create link post in comment section