CLASS XII DataFrame Count and Size

 


Certainly! In Python, you can use the pandas library to handle data in DataFrames. Below are examples of how you can get the size and count of elements in a DataFrame using pandas.

1. Getting the Size of a DataFrame (include NaN and None Values)

To get the size (i.e., the total number of elements) in a DataFrame, you can use the size attribute.

python
import pandas as pd # Sample DataFrame data = { 'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9] } df = pd.DataFrame(data) # Get the size of the DataFrame size = df.size print("Size of the DataFrame:", size)

2. Getting the Count of Non-NA/null Entries  (Exclude NaN and None Values)

To get the count of non-NA/null entries for each column, you can use the count() method.


import pandas as pd # Sample DataFrame data = { 'A': [1, 2, None], 'B': [4, None, 6], 'C': [None, 8, 9] } df = pd.DataFrame(data) # Get the count of non-NA/null entries for each column count_non_na = df.count() print("Count of non-NA/null entries for each column:") print(count_non_na)

print("df.count(0)\n",df.count(0))
print("df.count(1)\n",df.count(1))




In pandas, the count() method is used to count the number of

non-NA/null entries in each column or row of a DataFrame.

This method is very useful for understanding how much data you

have in each part of your DataFrame, especially when dealing with

missing values.

  • df.count(): Counts non-NA/null entries in each column.
  • df.count(axis=1): Counts non-NA/null entries in each row.
  • df.count(axis=0): Counts non-NA/null entries along columns (default).

Usage of the count() Function

Here's how you can use the count() method with a DataFrame:

1. Count Non-NA/null Entries in Each Column

By default, df.count() counts the non-NA/null entries for each column.

import pandas as pd # Sample DataFrame data = { 'A': [1, 2, None], 'B': [4, None, 6], 'C': [None, 8, 9] } df = pd.DataFrame(data) # Count of non-NA/null entries in each column count_per_column = df.count() print("Count of non-NA/null entries for each column:") print(count_per_column)

Output:

Count of non-NA/null entries for each column: A 2 B 2 C 2 dtype: int64

2. Count Non-NA/null Entries in Each Row

You can use the axis=1 parameter to count the non-NA/null

entries for each row.

python
import pandas as pd # Sample DataFrame data = { 'A': [1, 2, None], 'B': [4, None, 6], 'C': [None, 8, 9] } df = pd.DataFrame(data) # Count of non-NA/null entries in each row count_per_row = df.count(axis=1) print("Count of non-NA/null entries for each row:") print(count_per_row)

Output:

Count of non-NA/null entries for each row: 0 2 1 2 2 2 dtype: int64

3. Count Non-NA/null Entries for Specific Axis

You can use the axis parameter to specify whether you want to count

entries along the rows or columns:

  • axis=0 (or omit axis parameter): Counts along columns (default).
  • axis=1: Counts along rows.

Example of counting along columns (default behavior):

python
import pandas as pd # Sample DataFrame data = { 'A': [1, 2, None], 'B': [4, None, 6], 'C': [None, 8, 9] } df = pd.DataFrame(data) # Count non-NA/null entries along columns count_columns = df.count(axis=0) print("Count of non-NA/null entries along columns:") print(count_columns)

Example of counting along rows:

python

import pandas as pd # Sample DataFrame data = { 'A': [1, 2, None], 'B': [4, None, 6], 'C': [None, 8, 9] } df = pd.DataFrame(data) # Count non-NA/null entries along rows count_rows = df.count(axis=1) print("Count of non-NA/null entries along rows:") print(count_rows)




Post a Comment

0 Comments